Датчики потокаСтраница 12
Инжекционные измерители потока.
Средний массовый расход любой текучей среды можно определить путем инжекции в поток известного количества тепла и измерения изменения температуры этой среды за нагревателем (ниже по течению). Средний массовый расход рассчитывается по формуле
, (2.1)
где F - массовый расход (кг/с); q - скорость стационарной инжекции тепла (Вт); cb - удельная теплоемкость текучей среды (Дж/кг×К); Tu - температура текучей среды перед нагревателем - выше по течению; Td - температура текучей среды за нагревателем - ниже по течению.
Значения температур, которые входят в формулу (2.1), можно измерить с помощью термисторов или термопар. Хотя метод стационарной тепловой инжекции весьма прост, но на практике при его реализации довольно трудно получить хорошую точность по двум следующим причинам: 1) могут иметь место паразитные утечки тепла, например, через стенки потокопровода, 2) датчик температуры, расположенный выше по течению, должен находиться достаточно далеко от нагревателя, где устанавливается однородное распределение температуры, но это еще больше осложняет проблему паразитных утечек тепла.
Конвекционные измерители потока
Конвекционный измеритель потока обеспечивает определение локальной скорости жидкости или газа путем измерения количества тепла, которое рассеивает нагреваемый элемент, обтекаемый потоком. Измерение расхода можно осуществить чисто электронным путем, применяя в качестве датчика самонагревающийся резистор. Сопротивление такого резистора изменяется вследствии охлаждения потоком, в результате чего резистор действует как датчик расхода. В этих условиях теплоотвод осуществляется несколькими путями:
PL1 - теплопроводность через среду потока к стенкам трубы; PL1~T1;
PL2 - теплоотводность через механический держатель и электропровода; Pl2~T1;
Pstr - теплопередача путем излучения (по закону Стефана- Больцмана Pstr~T14);
Pk1 - теплопередача путем свободной конвекции; Pk1~T1;
Pk2 - теплопередача путем вынужденной конвекции (поток):
, (2.2)
где Q - объемный расход.
В итоге омический элемент датчика оказывается в состоянии теплового равновесия, т.е. количество подводимой энергии равно количеству отводимой.
Поскольку проводимая электрическая энергия равна I2R(T1), равновесие определяется выражением
I2R(T1)= PL1+ PL2+ Pstr+ Pk1+ Pk2, (2.3)
где Pk2 представляет собой собственно измеряемую величину, так как она определяется потоком в канале. Поэтому все остальные формы теплопередачи могут быть выражены константой. В этом случае получается так называемое уравнение Кинга
I2R(T1)=( a1+a2Q1/2)(Tå-Tf), (2.4)
В этом уравнении a1 и a2 можно считать аппаратурными параметрами (структурой нагреваемого элемента и удельной теплоемкости текучей среды), остающимися постоянными в известных пределах.
Если элемент и текучая среда находятся в тепловом равновесии, то количество теплоты, ежесекундно передаваемого в поток, равно джоулевой мощности, выделяемой в элементе:
P=I2R (2.5)
где Р - выделяемая в элементе мощность; I - электрический ток через элемент; R - электрическое сопротивление элемента.