Высоковольтный элегазовый баковый выключатель ВГБ-35
Страница 17

R~=kд.п.r0.(1+acu.Jном).l/S=1,034.1,62.10-8.(1+4,33.10-3.57).0,175/4,909.10-4=7,446.10-6 Ом.

16. Суммарный тепловой поток, выделяющийся в трёх подвижных контактах при номинальном токе Ф = 3.Iном2.R~ = 3.6302.7,446.10-6 = 8,866 Вт (см. п. 3.4.).

17. Температура поверхности ТЭ

Jном = Ф/(kт.с.S¢) + J0 = 8,886/(12,452.0,04123) + 40 = 57,3 °С.

Кроме нагрева подвижных контактов имеет место нагрев в контактных узлах (самый значительный по сути!), неподвижных контактах, алюм. шинах, соединяющих выводы проходных изоляторов с неподвижными контактами. Всё это рассматривается и учитывается в программном расчёте токоведущей системы высоковольтных выключателей {5}.

3.6. ПОРЯДОК ТЕПЛОВОГО РАСЧЁТА ТОКОВЕДУЩИХ СИСТЕМ

МЕТОДОМ ТЕПЛОВЫХ СХЕМ

1. Разработка тепловой модели токоведущих систем (ТС) аппарата в виде стержневой системы, в которой выделяются участки однородности.

2. По тепловой модели строится тепловая схема. Несовершенство теплового и электрического контакта на стыке стержней учитывается в тепловой схеме источниками теплового потока и теплового сопротивления.

3. Расчёт всех сопротивлений и источников, входящих в тепловую схему.

4. Тепловая схема рассчитывается по методам, применяем в электротехнике, и находятся температуры на границах каждого участка.

5. По уравнениям связи для каждого участка определяются параметры, необходимые в дальнейшем для построения графика распределения теплового потока вдоль токоведущей системы.

3.7. ПОСТРОЕНИЕ ТЕПЛОВОЙ МОДЕЛИ ТОКОВЕДУЩЕЙ СИСТЕМЫ

Для теплового расчёта ТС ВГБ-35 программой {5}, необхо­димо упростить исходную токоведущую систему до системы коаксиальных ци­линдров, что в принципе возможно, при замене корпуса бака выключателя экви­валентным цилиндром того же объёма, имеющим ось симметрии, совпадающую с осью симметрии одного из шести проходных изоляторов выключателя. (Рассматриваем только одну фазу и в силу вертикальной симметрии конструкции бака с проходными изоляторами, ограничиваемся следующей цепочкой: ввод проходного изолятора Þ токопровод изолятора Þ алюминиевая шина, соединяющая вывод изолятора с неподвижным контак­том Þ контактный узел Þ подвижный контакт половинной длины Þ элегаз). Алюминиевая шина прямоугольного сечения заменяется эквивалентным стержнем, имеющим такое же сечение и длину.

График распределения теплового потока данной модели (см. приложение) необходимо зеркально отразить по горизонтали из-за причин, обрисованных выше. Схема тепловой модели показана на рис. 3.7.

Где 1 - токопровод проходного изолятора; 2 - воздушный промежуток; 3 - фарфор; 4 - винипол; 5 - стеклоэпоксид; 6 - сталь колпака трансформатора тока; 7 - изоляция трансформатора тока; 8 - подвижный контакт половиной длины; 9 - алюминиевая шина; 10 - элегаз под давлением 0,45 МПа; 11 - стальной корпус бака; I VIII - участки однородности токоведущей системы; КУ -контактный узел.

3.8. ИСХОДНЫЕ ДАННЫЕ ДЛЯ МАШИННОГО РАСЧЁТА

Исходные данные для расчёта токоведущего контура пр-мой {5} приведены в таблице 3.3.

Таблица 3.3

Параметры

I

II

III

IV

V

VI

VII

VIII

L, м

0,075

0,425

0,010

0,180

0,040

0,180

0,190

0,090

S, м*10-6

78,540

78,540

78,540

78,540

78,540

78,540

58,786

78,540

F, м. кв.*10-6

490,874

490,874

490,874

490,874

490,874

490,874

275,0

490,874

r0, Ом×м*10-8

1,62

1,62

1,62

1,62

1,62

1,62

3,30

1,62

l, Вт/(м×°С)

390

390

390

390

390

390

160

390

a, 1/°С*10-3

4,33

4,33

4,33

4,33

4,33

4,33

4,2

4,33

1

r2/r1

0,050/

0,0125

0,030/

0,0125

0,040/

0,0125

0,040/

0,0125

0,100/

0,0125

0,040/

0,0125

0,230/

0,009

0,230/

0,025

P, МПа

0,1

0,1

0,1

0,1

0,1

0,1

0,45

0,45

2

r3/r2

0,070/

0,050

0,050/

0,030

0,115/

0,040

0,080/

0,040

0,115/

0,100

0,230/

0,040

0,250/

0,230

0,250/

0,230

P, МПа

0,1

0,1

0,1

0,45

3

r4/r3

0,090/

0,050

0,100/

0,080

0,125/

0,115

0,250/

0,230

P, МПа

0,1

4

r5/r4

0,110/

0,100

P, МПа

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24