Изготавление изделий из пласмассы
Страница 8

Объемные характеристики материала: насыпная плотность, удельный объем, коэффициент уплотнения. (Удельный объем - величина, определяемая отношением объема материала к его массе; насыпная плотность - величина обратная удельному объему). Этот показатель определяет величину загрузочной камеры прессформы, бункера и некоторые размеры оборудования, а при переработке пресспорошков с большим удельным объемом уменьшается производительность из-за плохой теплопроводности таких порошков.

Таблетируемость - это возможность спрессовывания прессматериала под действием внешних сил и сохранения полученной формы после снятия этих сил.

2.3.3. Физико-химические основы переработки пластмасс

В основе процессов переработки пластмасс находятся физические и физико-химические процессы структурообразования и формования:

1) нагревание, плавление, стеклование и охлаждение;

2) изменение объема и размеров при воздействии температуры и давления;

3) деформирование, сопровождающееся развитием пластической (необратимой) и высокоэластичной деформации и ориентацией макромолекулярных цепей;

4) релаксационные процессы;

5) формирование надмолекулярной структуры, кристаллизация полимеров (кристаллизующихся);

6) деструкция полимеров.

Эти процессы могут проходить одновременно и взаимосвязанно. Преобладающим будет только один процесс на определенной стадии.

В процессе формования изделий полимер нагревают до высокой температуры, деформируют путем сдвига, растяжения или сжатия и затем охлаждают. В зависимости от параметров указанных процессов можно в значительной мере изменить структуру, конформацию макромолекул, а также физико-механические, оптические и другие характеристики полимеров.

При охлаждении большого количества полимеров протекает процесс кристаллизации.

Кристаллизация в зависимости от состояния расплава приводит к различным видам структуры. Кристаллизация из расплава полимера в равновесном состоянии без деформации приводит к образованию сферолитных структур. Центром образования таких структур является зародыш , от которого образуются лучеобразные фибриллы, состоящие из множества упакованных ламелей. Фибриллы , разрастаясь в радиальном направлении и в ширину, образуют сферообразные структуры - сферолиты. Сферолиты образуются одновременно в большом числе центров кристаллизации. На основе этого сферолиты в местах контакта образуют грани и представляют собой многогранники произвольной формы и размеров. Электронно-микроскопичес-кие исследования показывают, что фибрилла сферолитов составлена из множества ламелей, уложенных друг на друга (рис.7) и скрученных вокруг радиуса сферолита.

Кристаллизация из расплава полимера протекает при введении в полимерный материал кристаллизаторов - зародышей.

Если кристаллизация протекает под высоким давлением (300 .500 Мпа) и при высокой температуре, то образуется кристаллическая структура из выпрямленных цепей; при быстром охлаждении того же расплава кристаллизация проходит с образованием сложных цепей, макромолекулы в этом случае в расплаве в виде доменов, а быстрое охлаждение не позволяет им перейти в новую конформацию, т.е. приобрести вытянутую форму. Установлено также, что с увеличением давления температура кристаллизации повышается. Практическое значение этого свойства: возможность перехода полимера непосредственно из расплава без охлаждения в квазикристаллическое состояние при повышении давления; при этом исключается течение и затормаживаются релаксационные процессы. При повышении давления образуются более мелкие сферолиты и поэтому увеличивается механическая прочность изделий. Размеры кристаллов также зависят от скорости охлаждения и температуры в процессе формования изделия. При высокой скорости охлаждения получают мелкокристаллическую структуру, так как времени на перегруппировку кристаллов недостаточно.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32